Holographic description of boundary gravitons in (3+1) dimensions

Author:

Asante Seth K.,Dittrich Bianca,Haggard Hal M.ORCID

Abstract

Abstract Gravity is uniquely situated in between classical topological field theories and standard local field theories. This can be seen in the quasi-local nature of gravitational observables, but is nowhere more apparent than in gravity’s holographic formulation. Holography holds promise for simplifying computations in quantum gravity. While holographic descriptions of three-dimensional spacetimes and of spacetimes with a negative cosmological constant are well-developed, a complete boundary description of zero curvature, four-dimensional spacetime is not currently available. Building on previous work in three-dimensions, we provide a new route to four-dimensional holography and its boundary gravitons. Using Regge calculus linearized around a flat Euclidean background with the topology of a solid hyper-torus, we obtain the effective action for a dual boundary theory, which describes the dynamics of the boundary gravitons. Remarkably, in the continuum limit and at large radii this boundary theory is local and closely analogous to the corresponding result in three-dimensions. The boundary effective action has a degenerate kinetic term that leads to singularities in the one-loop partition function that are independent of the discretization. These results establish a rich boundary dynamics for four-dimensional flat holography.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lorentzian quantum gravity via Pachner moves: one-loop evaluation;Journal of High Energy Physics;2023-09-12

2. From spin foams to area metric dynamics to gravitons;Classical and Quantum Gravity;2023-04-12

3. Perfect discretizations as a gateway to one-loop partition functions for 4D gravity;Journal of High Energy Physics;2022-05-25

4. Quantum geometry from higher gauge theory;Classical and Quantum Gravity;2020-09-18

5. Twistor representation of Jackiw –Teitelboim gravity;Classical and Quantum Gravity;2020-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3