Low-energy radiative backgrounds in CCD-based dark-matter detectors

Author:

Du PeizhiORCID,Egaña-Ugrinovic DanielORCID,Essig RouvenORCID,Sholapurkar MukulORCID

Abstract

Abstract The reach of sub-GeV dark-matter detectors is at present severely affected by low-energy events from various origins. We present the theoretical methods to compute the single- and few-electron events that arise from secondary radiation emitted by high-energy particles as they pass through detector materials and perform a detailed simulation to quantify them at (Skipper) CCD-based experiments, focusing on the SENSEI data collected at Fermilab near the MINOS cavern. The simulations account for the generation of secondaries from Cherenkov and luminescent recombination radiation; photo-absorption in the bulk, backside layer, pitch adapter, and epoxy; the photon reflection and refraction at interfaces; thin-film interference; the roughness of the interfaces; the dynamics of charges produced in the highly doped CCD-backside-layers; and the partial charge collection on the CCD backside. We consider several systematic uncertainties, notably those stemming from the backside modeling, which we estimate with a “fiducial” and an “extreme” charge-diffusion model, with the former model being preferred due to better agreement with partial-charge collection data. We find that Cherenkov photons constitute about 30% of the observed single-electron events for both diffusion models; radiative recombination contributes negligibly to the event rate for the fiducial model, although it can dominate over Cherenkov for the extreme model. We also estimate the fraction of 2-electron events that arise from 1-electron event coincidences in the same pixel, finding that the entire 2-electron rate can be explained by coincidences of radiative events and spurious charge. Accounting for both radiative and non-radiative backgrounds, we project the sensitivity of future Skipper-CCD-based experiments to different dark-matter models. For light-mediator models with dark-matter masses of 1, 5, and 10 MeV, we find that future experiments with 10-kg-year exposures and successful background mitigation could have a sensitivity that is larger by 9, 3, and 2 orders of magnitude, respectively, when compared to an experiment without background improvements.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3