Abstract
Abstract
Stochastic fluid dynamics governs the long time tails of hydrodynamic correlation functions, and the critical slowing down of relaxation phenomena in the vicinity of a critical point in the phase diagram. In this work we study the role of multiplicative noise in stochastic fluid dynamics. Multiplicative noise arises from the dependence of transport coefficients, such as the diffusion constants for charge and momentum, on fluctuating hydrodynamic variables. We study long time tails and relaxation in the diffusion of a conserved density (model B), and a conserved density coupled to the transverse momentum density (model H). Careful attention is paid to fluctuation-dissipation relations. We observe that multiplicative noise contributes at the same order as non-linear interactions in model B, but is a higher order correction to the relaxation of a scalar density and the tail of the stress tensor correlation function in model H.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献