Author:
Noro Masayuki,Yokoyama Kazuhiro
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics
Reference32 articles.
1. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies in Mathematics 3. American Mathematical Society, Providence (1994)
2. Afzal, D., Kanwal, F., Pfister, G., Steidel, S.: Solving via Modular Methods. In: Bridging Algebra, Geometry, and Topology, Springer Proceedings in Mathematics & Statistics, vol. 96, pp. 1–9 (2014)
3. Arnold, E.: Modular algorithms for computing Gröbner bases. J. Symb. Comput. 35, 403–419 (2003)
4. Böhm, J., Decker, W., Fieker, C., Pfister, G.: The use of bad primes in rational reconstruction. Math. Comput. 84, 3013–3027 (2015)
5. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, Undergraduate Text in Mathematics, 4th edn. Springer, New York (2015)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modular computations of standard bases for subalgebras;Communications in Algebra;2023-02-23
2. Modular Techniques for Intermediate Primary Decomposition;Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation;2022-07-04
3. Computing and using minimal polynomials;Journal of Symbolic Computation;2020-09
4. Ideals Modulo a Prime;Journal of Algebra and Its Applications;2020-02-14
5. Modular Techniques for Noncommutative Gröbner Bases;Mathematics in Computer Science;2019-11-21