1. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. In: Cooperation with Heinz Kredel, vol. 141. Springer, New York (1993)
2. Berkesch, C., Schreyer, F.-O.: Syzygies, finite length modules, and random curves. In: Commutative Algebra and Noncommutative Algebraic Geometry. Vol. I: Expository articles, pp. 25–52. Cambridge University Press, Cambridge (2015)
3. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. Symbolic and algebraic computation, EUROSAM ’79, International Symposium, Marseille 1979, Lecture Notes Computer Science 72, 3–21 (1979)
4. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität Innsbruck (1965)
5. Buchberger, B.: Bruno Buchberger’s Ph.D. thesis 1965: an algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Translation from the German. J. Symb. Comput. 41(3–4), 475–511 (2006)