Hierarchies of description enable understanding of cognitive phenomena in terms of neuron activity

Author:

Coward L. AndrewORCID

Abstract

AbstractOne objective of neuroscience is to understand a wide range of specific cognitive processes in terms of neuron activity. The huge amount of observational data about the brain makes achieving this objective challenging. Different models on different levels of detail provide some insight, but the relationship between models on different levels is not clear. Complex computing systems with trillions of components like transistors are fully understood in the sense that system features can be precisely related to transistor activity. Such understanding could not involve a designer simultaneously thinking about the ongoing activity of all the components active in the course of carrying out some system feature. Brain modeling approaches like dynamical systems are inadequate to support understanding of computing systems, because their use relies on approximations like treating all components as more or less identical. Understanding computing systems needs a much more sophisticated use of approximation, involving creation of hierarchies of description in which the higher levels are more approximate, with effective translation between different levels in the hierarchy made possible by using the same general types of information processes on every level. These types are instruction and data read/write. There are no direct resemblances between computers and brains, but natural selection pressures have resulted in brain resources being organized into modular hierarchies and in the existence of two general types of information processes called condition definition/detection and behavioral recommendation. As a result, it is possible to create hierarchies of description linking cognitive phenomena to neuron activity, analogous with but qualitatively different from the hierarchies of description used to understand computing systems. An intuitively satisfying understanding of cognitive processes in terms of more detailed brain activity is then possible.

Funder

Australian National University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3