Task load modulates tDCS effects on brain network for phonological processing

Author:

Rodrigues de Almeida Lílian,Pope Paul A.,Hansen Peter C.

Abstract

AbstractMotor participation in phonological processing can be modulated by task nature across the speech perception to speech production range. The pars opercularis of the left inferior frontal gyrus (LIFG) would be increasingly active across this range, because of changing motor demands. Here, we investigated with simultaneous tDCS and fMRI whether the task load modulation of tDCS effects translates into predictable patterns of functional connectivity. Findings were analysed under the “multi-node framework”, according to which task load and the network structure underlying cognitive functions are modulators of tDCS effects. In a within-subject study, participants (N = 20) performed categorical perception, lexical decision and word naming tasks [which differentially recruit the target of stimulation (LIFG)], which were repeatedly administered in three tDCS sessions (anodal, cathodal and sham). The LIFG, left superior temporal gyrus and their right homologues formed the target network subserving phonological processing. C-tDCS inhibition and A-tDCS excitation should increase with task load. Correspondingly, the larger the task load, the larger the relevance of the target for the task and smaller the room for compensation of C-tDCS inhibition by less relevant nodes. Functional connectivity analyses were performed with partial correlations, and network compensation globally inferred by comparing the relative number of significant connections each condition induced relative to sham. Overall, simultaneous tDCS and fMRI was adequate to show that motor participation in phonological processing is modulated by task nature. Network responses induced by C-tDCS across phonological processing tasks matched predictions. A-tDCS effects were attributed to optimisation of network efficiency.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Cognitive Neuroscience,Experimental and Cognitive Psychology,General Medicine

Reference133 articles.

1. Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412(2):319–341. https://doi.org/10.1002/(SICI)1096-9861(19990920)412:2%3c319:AID-CNE10%3e3.0.CO;2-7

2. Andersson JLR, JenkinsonM, Smith SM (2007a) Non-linear optimization (Report TR07JA1). Retrieved from FMRIB Analysis Group Technical Reports website: https://www.fmrib.ox.ac.uk/datasets/techrep/

3. Andersson JLR, Jenkinson M, Smith SM (2007b) Non-linear registration, aka spatial normalization (Report TR07JA2). Retrieved from FMRIB Analysis Group Technical Reports website: https://www.fmrib.ox.ac.uk/datasets/techrep/

4. Annett M (1972) The distribution of manual asymmetry. Br J Psychol 63(3):343–358

5. Antal A, Polania R, Schmidt-Samoa C, Dechent P, Paulus W (2011) Transcranial direct current stimulation over the primary motor cortex during fMRI. Neuroimage 55:590–596. https://doi.org/10.1016/j.neuroimage.2010.11.085

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3