Hemispheric Asymmetry in TMS-Induced Effects on Spatial Attention: A Meta-Analysis

Author:

Wang TingORCID,de Graaf Tom,Tanner Lisabel,Schuhmann Teresa,Duecker Felix,Sack Alexander T.

Abstract

AbstractHemispheric asymmetry is a fundamental principle in the functional architecture of the brain. It plays an important role in attention research where right hemisphere dominance is core to many attention theories. Lesion studies seem to confirm such hemispheric dominance with patients being more likely to develop left hemineglect after right hemispheric stroke than vice versa. However, the underlying concept of hemispheric dominance is still not entirely clear. Brain stimulation studies using transcranial magnetic stimulation (TMS) might be able to illuminate this concept. To examine the putative hemispheric asymmetry in spatial attention, we conducted a meta-analysis of studies applying inhibitory TMS protocols to the left or right posterior parietal cortices (PPC), assessing effects on attention biases with the landmark and line bisection task. A total of 18 studies including 222 participants from 1994 to February 2022 were identified. The analysis revealed a significant shift of the perceived midpoint towards the ipsilateral hemifield after right PPC suppression (Cohen’s d = 0.52), but no significant effect after left PPC suppression (Cohen’s d = 0.26), suggesting a hemispheric asymmetry even though the subgroup difference does not reach significance (p = .06). A complementary Bayesian meta-analysis revealed a high probability of at least a medium effect size after right PPC disruption versus a low probability after left PPC disruption. This is the first quantitative meta-analysis supporting right hemisphere-specific TMS-induced spatial attention deficits, mimicking hemineglect in healthy participants. We discuss the result in the light of prominent attention theories, ultimately concluding how difficult it remains to differentiate between these theories based on attentional bias scores alone.

Publisher

Springer Science and Business Media LLC

Subject

Neuropsychology and Physiological Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3