Literature Survey for In-Vivo Reynolds and Womersley Numbers of Various Arteries and Implications for Compliant In-Vitro Modelling

Author:

Williamson P. N.ORCID,Docherty P. D.ORCID,Jermy M.ORCID,Steven B. M.

Abstract

Abstract Purpose In-vitro modelling can be used to investigate haemodynamics of arterial geometry and stent implants. However, in-vitro model fidelity relies on precise matching of in-vivo conditions. In pulsatile flow, velocity distribution and wall shear stress depend on compliance, and the Reynolds and Womersley numbers. However, matching such values may lead to unachievable tolerances in phantom fabrication. Methods Published Reynolds and Womersley numbers for 14 major arteries in the human body were determined via a literature search. Preference was given to in-vivo publications but in-vitro and in-silico values were presented when in-vivo values were not found. Subsequently ascending aorta and carotid artery case studies were presented to highlight the limitations dynamic matching would apply to phantom fabrication. Results Seven studies reported the in-vivo Reynolds and Womersley numbers for the aorta and two for the carotid artery. However, only one study each reported in-vivo numbers for the remaining ten arteries. No in-vivo data could be found for the femoral, superior mesenteric and renal arteries. Thus, information derived in-vitro and in-silico were provided instead. The ascending aorta and carotid artery models required scaling to 1.5× and 3× life-scale, respectively, to achieve dimensional tolerance restrictions. Modelling the ascending aorta with the comparatively high viscosity water/glycerine solution will lead to high pump power demands. However, all the working fluids considered could be dynamically matched with low pump demand for the carotid model. Conclusion This paper compiles available human haemodynamic information, and highlights the paucity of information for some arteries. It also provides a method for optimal in-vitro experimental configuration.

Funder

University of Canterbury

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3