The Glycocalyx and Pressure-Dependent Transcellular Albumin Transport

Author:

Dull Randal O.ORCID,Chignalia Andreia Z.ORCID

Abstract

Abstract Purpose Acute increases in hydrostatic pressure activate endothelial signaling pathways that modulate barrier function and vascular permeability. We investigated the role the glycocalyx and established mechanotransduction pathways in pressure-induced albumin transport across rat lung microvascular endothelial cells. Methods Rat lung microvascular endothelial cells (RLMEC) were cultured on Costar Snapwell chambers. Cell morphology was assessed using silver nitrate staining. RLMEC were exposed to zero pressure (Control) or 30 cmH2O (Pressure) for 30 or 60 min. Intracellular albumin uptake and transcellular albumin transport was quantified. Transcellular transport was reported as solute flux (Js) and an effective permeability coefficient (Pe). The removal of cell surface heparan sulfates (heparinase), inhibition of NOS (L-NAME) and reactive oxygen species (apocynin, Apo) was investigated. Results Acute increase in hydrostatic pressure augmented albumin uptake by 30–40% at 60 min and Js and Pe both increased significantly. Heparinase increased albumin uptake but attenuated transcellular transport while L-NAME attenuated both pressure-dependent albumin uptake and transport. Apo interrupted albumin uptake under both control and pressure conditions, leading to a near total lack of transcellular transport, suggesting a different mechanism and/or site of action. Conclusion Pressure-dependent albumin uptake and transcellular transport is another component of endothelial mechanotransduction and associated regulation of solute flux. This novel albumin uptake and transport pathway is regulated by heparan sulfates and eNOS. Albumin uptake is sensitive to ROS. The physiological and clinical implications of this albumin transport are discussed.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3