A U-Shaped Network Based on Multi-level Feature and Dual-Attention Coordination Mechanism for Coronary Artery Segmentation of CCTA Images
Author:
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Biomedical Engineering
Link
https://link.springer.com/content/pdf/10.1007/s13239-023-00659-1.pdf
Reference25 articles.
1. Bandyk, M. G., D. R. Gopireddy, C. Lall, K. C. Balaji, and J. Dolz. MRI and CT bladder segmentation from classical to deep learning based approaches: current limitations and lessons. Comput. Biol. Med. 134:104472, 2021.
2. Cheung, W. K., R. Bell, A. Nair, L. J. Menezes, R. Patel, S. Wan, K. Chou, J. Chen, R. Torll, R. H. Davies, J. C. Moon, D. C. Alexander, and J. Jacob. A computationally efficient approach to segmentation of the aorta and coronary arteries using deep learning. IEEE Access. 9:108873–108888, 2021.
3. Cui, H., and Y. Xia. Automatic coronary centerline extraction using gradient vector flow field and fast marching method from CT images. IEEE Access. 6:41816–41826, 2018.
4. Dorobanţiu, A., V. Ogrean, and R. Brad. Coronary centerline extraction from CCTA using 3D-UNet. Future Internet. 13(4):101, 2021.
5. Guo, C., M. Szemenyei, Y. Yi, W. Wang, B. Chen, and C. Fan. Sa-unet: spatial attention u-net for retinal vessel segmentation. In: 2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 1236–1242.
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Coronary artery segmentation in CCTA images based on multi-scale feature learning;Journal of X-Ray Science and Technology;2024-08-16
2. Integrated deep learning approach for automatic coronary artery segmentation and classification on computed tomographic coronary angiography;Network Modeling Analysis in Health Informatics and Bioinformatics;2024-08-01
3. KSAG-Net::Kernel-Size Attention Guidance Dual-Branch Network for Coronary Artery Segmentation;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3