Investigating the Equivalent Plastic Strain in a Variable Ring Length and Strut Width Thin-Strut Bioresorbable Scaffold

Author:

Hoddy BenORCID,Ahmed Naveed,Al-Lamee Kadem,Bullett Nial,Curzen Nick,Bressloff Neil W.

Abstract

Abstract Purpose The ArterioSorb$$^{\rm{{TM}}}$$ TM bioresorbable scaffold (BRS) developed by Arterius Ltd is about to enter first in man clinical trials. Previous generations of BRS have been vulnerable to brittle fracture, when expanded via balloon inflation in-vivo, which can be extremely detrimental to patient outcome. Therefore, this study explores the effect of variable ring length and strut width (as facilitated by the ArterioSorb$$^{\rm{{TM}}}$$ TM design) on fracture resistance via analysis of the distribution of equivalent plastic strain in the scaffold struts post expansion. Scaffold performance is also assessed with respect to side branch access, radial strength, final deployed diameter and percentage recoil. Methods Finite element analysis was conducted of the crimping, expansion and radial crushing of five scaffold designs comprising different variations in ring length and strut width. The Abaqus/Explicit (DS SIMULIA) solution method was used for all simulations. Direct comparison between in-silico predictions and in-vitro measurements of the performance of the open cell variant of the ArterioSorb$$^{\rm{{TM}}}$$ TM were made. Paths across the width of the crown apex and around the scaffold rings were defined along which the plastic strain distribution was analysed. Results The in-silico results demonstrated good predictions of final shape for the baseline scaffold design. Percentage recoil and radial strength were predicted to be, respectively, 2.8 and 1.7 times higher than the experimentally measured values, predominantly due to the limitations of the anisotropic elasto-plastic material property model used for the scaffold. Average maximum values of equivalent plastic strain were up to 2.4 times higher in the wide strut designs relative to the narrow strut scaffolds. As well as the concomitant risk of strut fracture, the wide strut designs also exhibited twisting and splaying behaviour at the crowns located on the scaffold end rings. Not only are these phenomena detrimental to the radial strength and risk of strut fracture but they also increase the likelihood of damage to the vessel wall. However, the baseline scaffold design was observed to tolerate significant over expansion without inducing excessive plastic strains, a result which is particularly encouraging, due to post-dilatation being commonplace in clinical practice. Conclusion Therefore, the narrow strut designs investigated herein, are likely to offer optimal performance and potentially better patient outcomes. Further work should address the material modelling of next generation polymeric BRS to more accurately capture their mechanical behaviour. Observation of the in-vitro testing indicates that the ArterioSorb$$^{\rm{{TM}}}$$ TM BRS can tolerate greater levels of over expansion than anticipated.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3