Abstract
Abstract
Let $$X = \{X_1,X_2, \ldots ,X_m\}$$
X
=
{
X
1
,
X
2
,
…
,
X
m
}
be a system of smooth vector fields in $${{\mathbb R}^n}$$
R
n
satisfying the Hörmander’s finite rank condition. We prove the following Sobolev inequality with reciprocal weights in Carnot-Carathéodory space $$\mathbb G$$
G
associated to system X$$\begin{aligned} \left( \frac{1}{\int _{B_R} K(x)\; dx} \int _{B_R} |u|^{t} K(x) \; dx \right) ^{1/t} \le C\, R \left( \frac{1}{\int _{B_R}\frac{1}{K(x)} \; dx} \int _{B_R} \frac{|X u|^2}{K(x)} \; dx \right) ^{1/2}, \end{aligned}$$
1
∫
B
R
K
(
x
)
d
x
∫
B
R
|
u
|
t
K
(
x
)
d
x
1
/
t
≤
C
R
1
∫
B
R
1
K
(
x
)
d
x
∫
B
R
|
X
u
|
2
K
(
x
)
d
x
1
/
2
,
where Xu denotes the horizontal gradient of u with respect to X. We assume that the weight K belongs to Muckenhoupt’s class $$A_2$$
A
2
and Gehring’s class $$G_{\tau }$$
G
τ
, where $$\tau $$
τ
is a suitable exponent related to the homogeneous dimension.
Funder
Università degli Studi di Salerno
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference30 articles.
1. Alberico, A.: Moser type inequalities for higher-order derivatives in Lorentz spaces. Potential Anal. 28, 389–400 (2008)
2. Alberico, A., Alberico, T., Sbordone, C.: A Sobolev inequality with reciprocal weights. Nonlinear Anal. 75, 5348–5356 (2012)
3. Alberico, A., Cianchi, A., Pick, L., Slavíková, L.: Sharp Sobolev type embeddings on the entire euclidean space. Commun. Pure Appl. Anal. 17, 2011–2037 (2018)
4. Alberico, T., Cianchi, A., Sbordone, C.: Fractional integrals and $$A_p-$$weights: a sharp estimate. C. R. Acad. Sci. Paris 17, 2011–2037 (2009)
5. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer, New York (2007)