Abstract
AbstractIn the paper we prove the weighted Hardy type inequality $$\begin{aligned} \int _{{{\mathbb {R}}}^N}V\varphi ^2 \mu (x)dx\le \int _{\mathbb {R}^N}|\nabla \varphi |^2\mu (x)dx +K\int _{\mathbb {R}^N}\varphi ^2\mu (x)dx, \end{aligned}$$
∫
R
N
V
φ
2
μ
(
x
)
d
x
≤
∫
R
N
|
∇
φ
|
2
μ
(
x
)
d
x
+
K
∫
R
N
φ
2
μ
(
x
)
d
x
,
for functions $$\varphi $$
φ
in a weighted Sobolev space $$H^1_\mu $$
H
μ
1
, for a wider class of potentials V than inverse square potentials and for weight functions $$\mu $$
μ
of a quite general type. The case $$\mu =1$$
μ
=
1
is included. To get the result we introduce a generalized vector field method. The estimates apply to evolution problems with Kolmogorov operators $$\begin{aligned} Lu=\varDelta u+\frac{\nabla \mu }{\mu }\cdot \nabla u \end{aligned}$$
L
u
=
Δ
u
+
∇
μ
μ
·
∇
u
perturbed by singular potentials.
Funder
Università degli Studi di Salerno
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献