Periodic unfolding for lattice structures

Author:

Falconi Riccardo,Griso Georges,Orlik Julia

Abstract

AbstractThis paper deals with the periodic unfolding for sequences defined on one dimensional lattices in $${\mathbb {R}}^N$$ R N . In order to transfer the known results of the periodic unfolding in $${\mathbb {R}}^N$$ R N to lattices, the investigation of functions defined as interpolation on lattice nodes play the main role. The asymptotic behavior for sequences defined on periodic lattices with information until the first and until the second order derivatives are shown. In the end, a direct application of the results is given by homogenizing a 4th order Dirichlet problem defined on a periodic lattice.

Funder

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. Abrate, S.: Continuum modeling of lattice structures III. Shock Vib. Digest 23, 16–21 (1991)

2. Caillerie, D., Moreau, G.: Homogénéisation discrète: application aux treillis en forme de coque et à l’élasticité. Huitièmes entretiens du centre Jacques Cartier, Élasticité, viscoélasticité et contrôle optimal, aspects théoriques et numériques, Lyon, France 68, (Décembre 1995)

3. Casado-Diaz, J., Luna-Laynez, M., Martin, J.D.: An adaptation of the multi-scale methods for the analysis of very thin reticulated structures. C. R. Acad. Sci. Paris Sér. I Math. 332, 223–228 (2001)

4. Ciarlet, P.-G.: The finite element method for elliptic problems. Studies in Mathematics and its Applications. North Holland Publishing Co., Amsterdam-New York-Oxford (1978)

5. Cioranescu, D., Damlamian, A., Griso, G.: The Periodic Unfolding Method: Theory and Applications to Partial Differential Problems. Series in Contemporary Mathematics. Springer, Singapore (2018)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the ultimate strength of heterogeneous slender structures based on multi-scale stress decomposition;International Journal of Engineering Science;2024-02

2. Asymptotic behavior for textiles with loose contact;Mathematical Methods in the Applied Sciences;2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3