Abstract
AbstractA general FitzHugh–Rinzel model, able to describe several neuronal phenomena, is considered. Linear stability and Hopf bifurcations are investigated by means of the spectral equation for the ternary autonomous dynamical system and the analysis is driven by both an admissible critical point and a parameter which characterizes the system.
Funder
Università degli Studi di Napoli Federico II
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference26 articles.
1. Keener, J.P., Sneyd, J.: Mathematical physiology. Springer, New York (1998)
2. Izhikevich, E.M.: Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT Press, London (2007)
3. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)
4. Kudryashov, N.A., Rybka, K.R., Sboev, A.: Analytical properties of the perturbed FitzHugh-Nagumo model. Appl. Math. Lett. 76, 142–147 (2018)
5. De Angelis, M.: A wave equation perturbed by viscous terms: Fast and slow times diffusion effects in a Neumann problem. Ric. Mat. 68, 237–252 (2019)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献