Stability of plane shear flows in a layer with rigid and stress-free boundary conditions

Author:

Falsaperla Paolo,Mulone GiuseppeORCID,Perrone Carla

Abstract

AbstractWe study the stability of shear flows of an incompressible fluid contained in a horizontal layer. We consider rigid–rigid, rigid—stress-free and stress-free—stress-free boundary conditions. We study (and recall some known results) linear stability/instability of the basic Couette, Poiseuille and a laminar parabolic flow with the spectral analysis by using the Chebyshev collocation method. We then use an $$L_2$$ L 2 -energy with Lyapunov second method to obtain nonlinear critical Reynolds numbers, by solving a maximum problem arising from the Reynolds energy equation. We obtain this maximum (which gives the minimum Reynolds number) for streamwise perturbations $$\mathrm{Re}_c={\text {Re}}^y$$ Re c = Re y . However, this contradicts a theorem which proves that streamwise perturbations are always stabilizing, $${\text {Re}}^y=+\infty $$ Re y = + . We solve this contradiction with a conjecture and prove that the critical nonlinear Reynolds numbers are obtained for two-dimensional perturbations, the spanwise perturbations, $$\mathrm{Re}_c={\text {Re}}^x$$ Re c = Re x , as Orr had supposed in the classic case of Couette flow between rigid planes.

Funder

Ministero dell’Istruzione, dell’Universita e della Ricerca

Universita di Catania

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics

Reference34 articles.

1. Couette, M.: Études sur le frottement des liquides. Ann. Chim. Phys. 6(21), 433–510 (1890)

2. Poiseuille, J.L.M.: Experimentelle Untersuchungen ber die Bewegung der Flssigkeiten in Rhren von sehr kleinen Durchmessern. Annalen der Physik 134(3), 424–448 (1843)

3. Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proc. R. Soc. Lond. 35, 84–99 (1883)

4. Orr, W. M’F.: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Proc. Roy. Irish Acad. A 27 9–68 and 69–138 (1907)

5. Sommerfeld, A.: Ein Beitrg zur hydrodynamischen Erklaerung der turbulenten Fluessigkeitsbewegungen. In: Prooceedings 4th International Congress of Mathematicians, Rome, vol III, pp. 116–124 (1908)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3