Periostin promotes EMT via inhibition of RIN1-mediated endocytosis of EGFR in gliomas

Author:

Zhou Fengqi,Yu Tianfu,Xiao Fan,Wang Binbin,Tian Wei,Xu Ran,Zhao Xiaochun,Zeng Ailiang,Liu Ning,Wang Yingyi,You Yongping,Zhang Junxia

Abstract

Abstract Purpose Approximately 1/3 of brain tumors are gliomas. Previous glioma-related studies have reported increased expression of periostin (POSTN) in these cancerous tissues, but the role and mechanism of POSTN in glioma development remain unclear. Methods Nanoscale liquid chromatography coupled with tandem mass spectrometry (nano LC–MS/MS) and RNA sequencing were used to identify differential protein and mRNA expression in clinical glioma samples. Quantitative real-time PCR (qRT–PCR) was used to measure the expression of POSTN in tissues and cells. The effects of POSTN on glioma cell migration and invasion were examined using wound healing, Transwell, and three-dimensional spheroid assays in vitro and a nude mouse xenograft model in vivo. The effects of POSTN on the stability, endocytosis, and degradation of EGFR were examined by immunoblotting and immunofluorescence staining. Truncation mutation analysis was performed to investigate direct interactions between POSTN and EGFR. Immunohistochemical staining was carried out to confirm the clinical significance of POSTN. Results Overexpression of POSTN induced epithelial-to-mesenchymal transition (EMT) in glioma cells in vivo and in vitro. Mechanistically, POSTN downregulation inhibited EGFR signaling by promoting EGFR endocytosis and degradation. In addition, POSTN was found to bind to EGFR and RIN1, inhibiting EGFR endocytosis and degradation and thus activating the PI3K-Akt signaling pathway. Conclusion These findings indicate the mechanism by which the POSTN/EGFR/RIN1 axis inhibits EGFR endocytosis and degradation, resulting in glioma cell EMT through the PI3K-AKT signaling pathway. Targeting POSTN/EGFR/RIN1 interactions may guarantee beneficial outcomes of glioma treatment.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3