Modelling and measurements of distributions in an adult human phantom undergoing proton scanning beam radiotherapy: lung- and prostate-located tumours

Author:

Puchalska MonikaORCID

Abstract

AbstractProton radiotherapy has been shown to offer a significant dosimetric advantage in cancer patients, in comparison to conventional radiotherapy, with a decrease in dose to healthy tissue and organs at risk, because the bulk of the beam energy is deposited in the Bragg peak to be located within a tumour. However, it should be kept in mind that radiotherapy of cancer is still accompanied by adverse side effects, and a better understanding and improvement of radiotherapy can extend the life expectancy of patients following the treatment of malignant tumours. In this study, the dose distributions measured with thermoluminescent detectors (TLDs) inside a tissue-equivalent adult human phantom exposed for lung and prostate cancer using the modern proton beam scanning radiotherapy technique were compared. Since the TLD detection efficiency depends on the ionization density of the radiation to be detected, and since this efficiency is detector specific, four different types of TLDs were used to compare their response in the mixed radiation fields. Additionally, the dose distributions from two different cancer treatment modalities were compared using the selected detectors. The measured dose values were benchmarked against Monte Carlo simulations and available literature data. The results indicate an increase in the lateral dose with an increase of the primary proton energy. However, the radiation quality factor of the mixed radiation increases by 20% in the vicinity to the target for the lower initial proton energy, due to the production of secondary charged particles of low-energy and short range. For the cases presented here the MTS-N TLD detector seems to be the most optimal tool for dose measurements within the target volume, while the MCP-N TLD detector, due to an interplay of its enhanced thermal neutron response and decreased detection efficiency to highly ionising radiation, is a better choice for the out-of-field measurements. The pairs of MTS-6 and MTS-7 TLDs used also in this study allowed for a direct measurement of the neutron dose equivalent. Before it can be concluded that they offer an alternative to the time-consuming nuclear track detectors, however, more research is needed to unambiguously confirm whether this observation was just accidental or whether it only applies to certain cases. Since there is no universal detector, which would allow the determination of the dosimetric quantities relevant for risk estimation, this work expands the knowledge necessary to improve the quality of dosimetry data and might help scientists and clinicians in choosing the right tools to measure radiation doses in mixed radiation fields.

Funder

TU Wien

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Radiation,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TOPAS Monte Carlo simulation for a scanning proton therapy system in SPHIC;Journal of Radiation Research and Applied Sciences;2022-03

2. Research on photogrammetry-based positioning of heavy ion radiotherapy and tumor target monitoring;Radiation Effects and Defects in Solids;2021-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3