Uncertainty analysis in internal dose calculations for cerium considering the uncertainties of biokinetic parameters and S values

Author:

Spielmann VladimirORCID,Li Wei BoORCID,Zankl Maria,Ramos Juan Camilo Ocampo,Petoussi-Henss Nina

Abstract

AbstractRadioactive cerium and other lanthanides can be transported through the aquatic system into foodstuffs and then be incorporated by humans. Information on the uncertainty of reported dose coefficients for exposed members of the public is then needed for risk analysis. In this study, uncertainties of dose coefficients due to the ingestion of the radionuclides 141Ce and 144Ce were estimated. According to the schema of internal dose calculation, a general statistical method based on the propagation of uncertainty was developed. The method takes into account the uncertainties contributed by the biokinetic models and by the so-called S values. These S-values were derived by using Monte Carlo radiation transport simulations with five adult non-reference voxel computational phantoms that have been developed at Helmholtz Zentrum München, Germany. Random and Latin hypercube sampling techniques were applied to sample parameters of biokinetic models and S values. The uncertainty factors, expressed as the square root of the 97.5th and 2.5th percentile ratios, for organ equivalent dose coefficients of 141Ce were found to be in the range of 1.2–5.1 and for 144Ce in the range of 1.2–7.4. The uncertainty factor of the detriment-weighted dose coefficient for 141Ce is 2.5 and for 144Ce 3.9. It is concluded that a general statistical method for calculating the uncertainty of dose coefficients was developed and applied to the lanthanide cerium. The dose uncertainties obtained provide improved dose coefficients for radiation risk analysis of humans. Furthermore, these uncertainties can be used to identify those parameters most important in internal dose calculations by applying sensitivity analyses.

Funder

Bundesministerium für Bildung und Forschung

Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Radiation,Biophysics

Reference62 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monte Carlo in Internal Dosimetry;Handbook on Radiation Environment, Volume 2;2024

2. Dose Coefficients for Internal Dose Assessments for Exposure to Radioactive Fallout;Health Physics;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3