In vitro cellular and proteome assays identify Wnt pathway and CDKN2A-regulated senescence affected in mesenchymal stem cells from mice after a chronic LD gamma irradiation in utero

Author:

Schuster Martina,Tewary Gargi,Bao Xuanwen,Subedi Prabal,Hauck Stefanie M.,Olsen Ann Karin,Eide Dag Markus,Trott Klaus Rüdiger,Götz Sebastian,Atkinson Michael J.,Rosemann MichaelORCID

Abstract

AbstractReliable data on the effects of chronic prenatal exposure to low dose (LD) of ionizing radiation in humans are missing. There are concerns about adverse long-term effects that may persist throughout postnatal life of the offspring. Due to their slow cell cycle kinetics and life-long residence time in the organism, mesenchymal stem cells (MSCs) are more susceptible to low level genotoxic stress caused by extrinsic multiple LD events. The aim of this study was to investigate the effect of chronic, prenatal LD gamma irradiation to the biology of MSCs later in life. C3H mice were exposed in utero to chronic prenatal irradiation of 10 mGy/day over a period of 3 weeks. Two years later, MSCs were isolated from the bone marrow and analyzed in vitro for their radiosensitivity, for cellular senescence and for DNA double-strand break recognition after a second acute gamma-irradiation. In addition to these cellular assays, changes in protein expression were measured using HPLC–MS/MS and dysregulated molecular signaling pathways identified using bioinformatics. We observed radiation-induced proteomic changes in MSCs from the offspring of in utero irradiated mice (leading to ~ 9.4% of all detected proteins being either up- or downregulated) as compared to non-irradiated controls. The proteomic changes map to regulation pathways involved in the extracellular matrix, the response to oxidative stress, and the Wnt signaling pathway. In addition, chronic prenatal LD irradiation lead to an increased rate of in vitro radiation-induced senescence later in life and to an increased number of residual DNA double-strand breaks after 4 Gy irradiation, indicating a remarkable interaction of in vivo radiation in combination with a second acute dose of in vitro radiation. This study provides the first insight into a molecular mechanism of persistent MSC damage response by ionizing radiation exposure during prenatal time and will help to predict therapeutic safety and efficacy with respect to a clinical application of stem cells.

Funder

FP7 Nuclear Fission, Safety and Radiation Protection

Research Council of Norway

Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Radiation,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3