Radiation and chemotherapy variable response induced by tumor cell hypoxia: impact of radiation dose, anticancer drug, and type of cancer

Author:

Ibrahim Ayman M.,Nady Soad,Shafaa Medhat W.,Khalil Magdy M.ORCID

Abstract

AbstractHypoxia is a condition in which proliferating tumor cells are deprived of oxygen due to limited blood supply from abnormal tumor microvasculature. This study aimed to investigate the molecular changes that occur in tumor cell hypoxia with special emphasis placed on the efficacy of chemotherapeutic and radiation-related effects. Four commercially available chemotherapeutic agents: cisplatin, cyclophosphamide, doxorubicin, and 5-fluorouracil, were tested for their cytotoxic activity on the cancer cell lines PC3 (prostate), HepG2 (liver), and MCF-7 (breast). Tumor cell lines under hypoxia were treated with both IC50 concentrations of the different chemotherapeutic agents and irradiated with 5 and 10 Gy using a 137Cs gamma source. Hypoxia-inducible factor-1α (HIF-1α) protein levels were examined using an ELISA assay. Hypoxic cells showed a significant change in cell viability to all chemotherapeutic agents in comparison to normoxic controls. HepG2 cells were more resistant to the cytotoxic drug doxorubicin compared to other cancer cell lines. The flow cytometric analysis showed that hypoxic cells have lower levels of total apoptotic cell populations (early and late apoptosis) compared to normoxic cells suggesting decreased hypoxia-induced apoptosis in cancer cells. The highest reduction in HIF-1α level was observed in the MCF-7 cell line (95.5%) in response to the doxorubicin treatment combined with 10 Gy irradiation of cells. Chemoradiotherapy could result in minimal as well as a high reduction of HIF-1α based on cell type, type of chemotherapy, and amount of ionizing radiation. This study highlights future research work to optimize a combined chemoradiotherapeutic regime in individual cancer cell hypoxia.

Funder

Helwan University

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Radiation,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3