Artificial heat waves induce species-specific plastic responses on reproduction of two spider mite predators

Author:

Walzer A.ORCID,Steiner T.,Spangl B.ORCID,Koschier E.ORCID

Abstract

AbstractClimate change models predict that the frequency, intensity and duration of heat waves will increase in the next decades. Heat waves can have profound impact on the reproduction of biocontrol agents ranging from postponing oviposition to manipulating offspring quantity via egg number and quality via egg size. Such species-specific responses of biocontrol agents to heat stress may also affect their success in controlling the target pest. Here, we evaluated the predation and reproductive performance of the two spider mite predators Phytoseiulus persimilis and Neoseiulus womersleyi exposed to simulated mild, moderate and extreme heat wave conditions over three days. Irrespective of heat wave conditions, all N. womersleyi females survived, whereas 12% of the P. persimilis females died. Both species responded to heat stress via plastic modifications resulting in increased predation rates and smaller egg sizes. Significantly more P. persimilis females postponed oviposition during the experimental phase than N. womersleyi. The deposited egg number of Phytoseiulus persimilis was not affected by heat wave conditions. On the contrary, the reproductive output of N. womersleyi was a function of temperature, i.e., the higher the temperature, the higher the number of deposited eggs. These findings indicate that P. persimilis is more heat sensitive in relation to reproduction than N. womersleyi. However, further investigations of heat wave effects on other fitness-related traits and their consequences at population level are needed to find out whether N. womersleyi is an alternative or supplement to P. persimilis as spider mite control agent under heat waves.

Funder

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3