Plant defences and spider-mite web affect host plant choice and performance of the whitefly Bemisia tabaci

Author:

Dias Cleide Rosa,Cardoso André Costa,Kant Merijn R.,Mencalha Jussara,Bernardo Ana Maria Guimarães,da Silveira Marcela Cristina Agustini Carneiro,Sarmento Renato Almeida,Venzon Madelaine,Pallini Angelo,Janssen ArneORCID

Abstract

AbstractHerbivores select host plants depending on plant quality and the presence of predators and competitors. Competing herbivores change host plant quantity through consumption, but they can also change plant quality through induction of plant defences, and this affects the performance of herbivores that arrive later on the plant. Some herbivores, such as the spider mite Tetranychus evansi, do not induce, but suppress plant defences, and later-arriving herbivores can profit from this suppression. It has been suggested that the dense web produced by this spider mite serves to prevent other herbivores to settle on the plant and benefit from the suppressed defences. Here, we confirmed this by studying the preference and performance of the whitefly Bemisia tabaci, a generalist herbivorous pest. To disentangle the effects through changes in plant defences from the effects of spider-mite web, we included treatments with a strain of the closely-related web-producing spider mite T. urticae, which induces plant defences. Whiteflies did perform worse on plants with defences induced by T. urticae, but, in contrast to other herbivores, did not perform better on plants with defences suppressed by T. evansi. Moreover, the web of both spider mites reduced the juvenile survival of whiteflies, and whiteflies avoided plants that were covered with web. Hence, whitefly performance was not only affected by plant quality and induced plant defences, but also through the web produced by spider mites, which thus serves to protect against potential competitors, especially when these could profit from the suppression of plant defences by the mites.

Funder

FAPEMIG

CAPES

CNPq

Horizon 2020 Framework Programme

NWO

FAPT

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Insect Science,Ecology, Evolution, Behavior and Systematics,Plant Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3