Visual modelling can optimise the appearance and capture efficiency of sticky traps used to manage insect pests

Author:

Dearden Alexander E.,Wood Martyn J.,Frend Henry O.,Butt Tariq. M.,Allen William L.

Abstract

AbstractSticky traps are one of the most important tools for monitoring and mass trapping of insect pests. Their effectiveness depends on attracting and capturing target pests efficiently. Trap colour strongly affects capture rates, but currently a principled approach to identifying optimal trap colour for a given pest and growing context is lacking. Here we propose that modelling pest colour vision enables identification of trap colours that optimise pest capture rates. We test this novel approach to trap design in field trials on Western flower thrips (WFT) Frankiniella occidentalis, an economically damaging pest of agriculture and horticulture worldwide. Prior studies have reported that WFT prefer blue and yellow sticky traps, aligning with recent evidence that WFT have trichromatic colour vision with peak sensitivities in the UV, blue and green portion of the visual spectrum and a blue-green colour opponent mechanism. Therefore, we hypothesised that a shade of blue that maximally stimulates the blue photoreceptor whilst minimally stimulating the green photoreceptor would improve sticky trap capture rates, while a shade of blue that decreased the opponent response would reduce capture rates. In three field experiments, we found strong support for this hypothesis: the optimised blue colour captured 1.3–2.6  times  more WFT than current commercial trap colours. Our results also demonstrated that visual modelling can identify optimally contrasting colours for two-colour traps that further improve capture rates. This study provides a novel and principled approach to the design of visual traps that could be extended to other pest management contexts.

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Insect Science,Ecology, Evolution, Behavior and Systematics,Plant Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3