Is polyphagy of a specific cryptic Bemisia tabaci species driving the high whitefly populations on cassava in eastern Africa?

Author:

Namuddu Annet,Malka Osnat,Seal Susan,van Brunschot Sharon,Kabaalu Richard,Omongo Christopher,Morin Shai,Colvin John

Abstract

AbstractSince the 1990s, the cryptic whitefly (Bemisia tabaci) has been linked to severe viral disease pandemics affecting cassava, a crucial staple crop in eastern Africa. This surge in whitefly populations has also been observed in other crops and uncultivated plants. While previous surveys have connected the increase on cassava to two specific populations, SSA1 and SSA2, the dynamics behind the population growth on other plants remain unclear. Additionally, other B. tabaci species, including EA1, IO, MED, SSA9, and SSA10, have been found on cassava in smaller numbers. This study aimed to identify the host plants that support the growth and development of different B. tabaci in Uganda by collecting fourth-instar nymphs from cassava and 20 other common host plants. Host transfer experiments were conducted to test the ability of seven species (EA1, MEAM1, MED-Africa Silver Leafing (ASL), SSA1-subgroup1, SSA1-Hoslundia, SSA6, and SSA12) to develop on cassava. The identities of the nymphs were determined using partial mitochondrial cytochrome oxidase 1 sequences. Twelve B. tabaci species were identified, including two novel species, based on the 3.5% nucleotide sequence divergence. Cassava was colonised by SSA1-SG1, SSA1-SG2, and SSA2. The most prevalent species were SSA1-SG1, MED-ASL, and SSA13, which were also the most polyphagous, colonising multiple plant species. Several whitefly species colonised specific weeds, such as Aspilia africana and Commelina benghalensis. The polyphagous nature of these species supports continuous habitats and virus reservoirs. Effective management of whitefly populations in eastern Africa requires an integrated approach that considers their polyphagy and the environmental factors sustaining host plants.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3