Insect netting: effect of mesh size and shape on exclusion of some fruit pests and natural enemies under laboratory and orchard conditions

Author:

Chouinard G.,Pelletier F.,Larose M.,Knoch S.,Pouchet C.,Dumont M.-J.,Tavares J. R.

Abstract

AbstractTo improve exclusion systems for fruit trees, insect nets of various types were evaluated for their permeability to different beneficial and pest species, under laboratory and field conditions. Pests studied were the apple maggot, Rhagoletis pomonella (Diptera: Tephritidae) and the spotted wing drosophila, Drosophila suzukii (Diptera: Drosophilidae). Beneficials were Aphidoletes aphidimyza (Diptera: Cecidomyiidae), Aphidius matricariae (Hymenoptera: Braconidae) and Aphelinus abdominalis (Hymenoptera: Aphelinidae). Mesh nets with five different apertures (square, rectangle, triangle, rhombus and hexagon) and six different sizes (from 0.4 to 2.8 mm) were 3D-printed from strands of polylactic acid and tested in the laboratory along with two commercially available nets made of polyethylene. The physical and behavioral characteristics of the six studied species affected their ability to cross the nets. For an equal size (open area), the intrusion rate was generally greater through the square- and/or hexagonal-shaped meshes. Rectangular-shaped apertures totally excluded the apple maggot in both laboratory and field trials, provided their shortest side did not exceed 1.9 mm. For the spotted wing drosophila, a maximum of 1.0 mm was similarly required for exclusion in the laboratory. The shape factor (length/width ratio) of the apertures appeared to affect net selectivity. Field trials confirmed that more aphid predators and leafroller parasitoids colonized trees covered with larger mesh nets (2.3 × 3.4 mm), while still excluding the apple maggot. Thus, for a similar aperture size (area), an elongated rectangular-shaped mesh appears to facilitate access for beneficials, while continuing to provide effective protection against apple pests.

Funder

Ministère de l'Agriculture, des Pêcheries et de l'Alimentation

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Insect Science,Ecology, Evolution, Behavior and Systematics,Plant Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3