Timing matters: remotely sensed vegetation greenness can predict insect vector migration and therefore outbreaks of curly top disease

Author:

Lee Hyoseok,Wintermantel William M.,Trumble John T.,Nansen Christian

Abstract

AbstractDue to climate change, outbreaks of insect-vectored plant viruses have become increasingly unpredictable. In-depth insights into region-level spatio-temporal dynamics of insect vector migration can be used to forecast plant virus outbreaks in agricultural landscapes; yet, it is often poorly understood. To explore this, we examined the incidence of beet curly top virus (BCTV) in 2,196 tomato fields from 2013 to 2022. In America, the beet leafhopper (Circulifer tenellus) is the exclusive vector of BCTV. We examined factors associated with BCTV incidence and spring migration of the beet leafhopper from non-agricultural overwintering areas. We conducted an experimental study to demonstrate beet leafhopper dispersal in response to greenness of plants, and spring migration time was estimated using a model based on vegetation greenness. We found a negative correlation between vegetation greenness and spring migration probability from the overwintering areas. Furthermore, BCTV incidence was significantly associated with spring migration time rather than environmental conditions per se. Specifically, severe BCTV outbreaks in California in 2013 and 2021 were accurately predicted by the model based on early beet leafhopper spring migration. Our results provide experimental and field-based support that early spring migration of the insect vector is the primary factor contributing to BCTV outbreaks. Additionally, the predictive model for spring migration time was implemented into a web-based mapping system, serving as a decision support tool for management purposes. This article describes an experimental and analytical framework of considerable relevance to region-wide forecasting and modeling of insect-vectored diseases of concern to crops, livestock, and humans.

Funder

Agricultural Marketing Service

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3