Author:
Bajpai Jitendra,Nitsche Martin
Abstract
R\'esum\'eThis article studies the orthogonal hypergeometric groups of degree five. We establish the thinness of 12 out of the 19 hypergeometric groups of type O(3, 2) from [4, Table 6]. Some of these examples are associated with Calabi-Yau 4-folds. We also establish the thinness of 9 out of the 17 hypergeometric groups of type O(4, 1) from [13], where the thinness of 7 other cases was already proven. The O(4, 1) type groups were predicted to be all thin and our result leaves just one case open.
Funder
Christian-Albrechts-Universität zu Kiel
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. J. Bajpai, D. Dona, and M. Nitsche. Thin monodromy in Sp(4) and Sp(6). preprint available at arXiv:2112.12111, 2021.
2. J. Bajpai, D. Dona, and M. Nitsche. Arithmetic monodromy in Sp(2n). preprint available at arXiv:2209.07402, 2022.
3. J. Bajpai, D. Dona, S. Singh, and S. V. Singh. Symplectic hypergeometric groups of degree six. J. Algebra, 575:256–273, 2021.
4. J. Bajpai and S. Singh. On orthogonal hypergeometric groups of degree five. Trans. Amer. Math. Soc., 372(11):7541–7572, 2019.
5. J. Bajpai, S. Singh, and S. V. Singh. Arithmeticity of some hypergeometric groups. Linear Algebra Appl., 661:137–148, 2023.