The Flow of ODEs: Formalization of Variational Equation and Poincaré Map
Author:
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computational Theory and Mathematics,Software
Link
http://link.springer.com/article/10.1007/s10817-018-9449-5/fulltext.html
Reference26 articles.
1. Boldo, S., Clément, F., Faissole, F., Martin, V., Mayero, M.: A Coq formal proof of the Lax–Milgram theorem. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, ACM, pp. 79–89 (2017)
2. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave equation numerical resolution: a comprehensive mechanized proof of a C program. J. Autom. Reason. 50(4), 423–456 (2013). https://doi.org/10.1007/s10817-012-9255-4
3. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015). https://doi.org/10.1007/s11786-014-0181-1
4. Boldo, S., Lelay, C., Melquiond, G.: Formalization of real analysis: a survey of proof assistants and libraries. Math. Struct. Comput. Sci. 26(7), 1196–1233 (2016). https://doi.org/10.1017/S0960129514000437
5. Fleuriot, J.D., Paulson, L.C.: Mechanizing nonstandard real analysis. LMS J. Comput. Math. 3, 140–190 (2000). https://doi.org/10.1112/S1461157000000267
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Formalization of Asymptotic Convergence for Stationary Iterative Methods;Lecture Notes in Computer Science;2024
2. Verified Correctness, Accuracy, and Convergence of a Stationary Iterative Linear Solver: Jacobi Method;Lecture Notes in Computer Science;2023
3. Towards Verified Rounding Error Analysis for Stationary Iterative Methods;2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness);2022-11
4. On the Formalization of the Heat Conduction Problem in HOL;Lecture Notes in Computer Science;2022
5. Improved Theoretical and Numerical Approaches for Solving Linear and Nonlinear Dynamic Systems;Nonlinear Approaches in Engineering Application;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3