A Relaxation of Üresin and Dubois’ Asynchronous Fixed-Point Theory in Agda

Author:

Daggitt Matthew L.ORCID,Zmigrod Ran,Griffin Timothy G.

Abstract

AbstractÜresin and Dubois’ paper “Parallel Asynchronous Algorithms for Discrete Data” shows how a class of synchronous iterative algorithms may be transformed into asynchronous iterative algorithms. They then prove that the correctness of the resulting asynchronous algorithm can be guaranteed by reasoning about the synchronous algorithm alone. These results have been used to prove the correctness of various distributed algorithms, including in the fields of routing, numerical analysis and peer-to-peer protocols. In this paper we demonstrate several ways in which the assumptions that underlie this theory may be relaxed. Amongst others, we (i) expand the set of schedules for which the asynchronous iterative algorithm is known to converge and (ii) weaken the conditions that users must prove to hold to guarantee convergence. Furthermore, we demonstrate that two of the auxiliary results in the original paper are incorrect, and explicitly construct a counter-example. Finally, we also relax the alternative convergence conditions proposed by Gurney based on ultrametrics. Many of these relaxations and errors were uncovered after formalising the work in the proof assistant Agda. This paper describes the Agda code and the library that has resulted from this work. It is hoped that the library will be of use to others wishing to formally verify the correctness of asynchronous iterative algorithms.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computational Theory and Mathematics,Software

Reference23 articles.

1. Agda routing library. https://github.com/MatthewDaggitt/agda-routing/tree/jar2019. Accessed 09 Mar 2019

2. Agda standard library. https://github.com/agda/agda-stdlib, version 0.17. Accessed 20 Oct 2018

3. Agda tutorials (2019). https://agda.readthedocs.io/en/latest/getting-started/tutorial-list.html. Accessed 06 Feb 2019

4. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda–a functional language with dependent types. In: Wenzel, M., Nipkow, T. (eds.) Theorem Proving in Higher Order Logics, pp. 73–78. Springer, Berlin (2009)

5. Casanova, H., Thomason, M.G., Dongarra, J.J.: Stochastic performance prediction for iterative algorithms in distributed environments. J. Parallel Distrib. Comput. 58(1), 68–91 (1999)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3