Fine-Grained Complexity of Safety Verification

Author:

Chini Peter,Meyer Roland,Saivasan Prakash

Abstract

AbstractWe study the fine-grained complexity of Leader Contributor Reachability ($${\textsf {LCR}} $$ LCR ) and Bounded-Stage Reachability ($${\textsf {BSR}} $$ BSR ), two variants of the safety verification problem for shared memory concurrent programs. For both problems, the memory is a single variable over a finite data domain. Our contributions are new verification algorithms and lower bounds. The latter are based on the Exponential Time Hypothesis ($${\textsf {ETH}} $$ ETH ), the problem $${\textsf {Set~Cover}} $$ Set Cover , and cross-compositions. $${\textsf {LCR}} $$ LCR is the question whether a designated leader thread can reach an unsafe state when interacting with a certain number of equal contributor threads. We suggest two parameterizations: (1) By the size of the data domain $${\texttt {D}}$$ D and the size of the leader $${\texttt {L}}$$ L , and (2) by the size of the contributors $${\texttt {C}}$$ C . We present algorithms for both cases. The key techniques are compact witnesses and dynamic programming. The algorithms run in $${\mathcal {O}}^*(({\texttt {L}}\cdot ({\texttt {D}}+1))^{{\texttt {L}}\cdot {\texttt {D}}} \cdot {\texttt {D}}^{{\texttt {D}}})$$ O ( ( L · ( D + 1 ) ) L · D · D D ) and $${\mathcal {O}}^*(2^{{\texttt {C}}})$$ O ( 2 C ) time, showing that both parameterizations are fixed-parameter tractable. We complement the upper bounds by (matching) lower bounds based on $${\textsf {ETH}} $$ ETH and $${\textsf {Set~Cover}} $$ Set Cover . Moreover, we prove the absence of polynomial kernels. For $${\textsf {BSR}} $$ BSR , we consider programs involving $${\texttt {t}}$$ t different threads. We restrict the analysis to computations where the write permission changes $${\texttt {s}}$$ s times between the threads. $${\textsf {BSR}} $$ BSR asks whether a given configuration is reachable via such an $${\texttt {s}}$$ s -stage computation. When parameterized by $${\texttt {P}}$$ P , the maximum size of a thread, and $${\texttt {t}}$$ t , the interesting observation is that the problem has a large number of difficult instances. Formally, we show that there is no polynomial kernel, no compression algorithm that reduces the size of the data domain $${\texttt {D}}$$ D or the number of stages $${\texttt {s}}$$ s to a polynomial dependence on $${\texttt {P}}$$ P and $${\texttt {t}}$$ t . This indicates that symbolic methods may be harder to find for this problem.

Funder

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computational Theory and Mathematics,Software

Reference42 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Fine-Grained Complexity of CFL Reachability;Proceedings of the ACM on Programming Languages;2023-01-09

2. Reconfigurable Broadcast Networks and Asynchronous Shared-Memory Systems are Equivalent;Electronic Proceedings in Theoretical Computer Science;2021-09-17

3. Liveness in broadcast networks;Computing;2021-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3