Formalizing the LLL Basis Reduction Algorithm and the LLL Factorization Algorithm in Isabelle/HOL

Author:

Thiemann RenéORCID,Bottesch Ralph,Divasón JoseORCID,Haslbeck Max W.ORCID,Joosten Sebastiaan J. C.ORCID,Yamada AkihisaORCID

Abstract

AbstractThe LLL basis reduction algorithm was the first polynomial-time algorithm to compute a reduced basis of a given lattice, and hence also a short vector in the lattice. It approximates an NP-hard problem where the approximation quality solely depends on the dimension of the lattice, but not the lattice itself. The algorithm has applications in number theory, computer algebra and cryptography. In this paper, we provide an implementation of the LLL algorithm. Both its soundness and its polynomial running-time have been verified using Isabelle/HOL. Our implementation is nearly as fast as an implementation in a commercial computer algebra system, and its efficiency can be further increased by connecting it with fast untrusted lattice reduction algorithms and certifying their output. We additionally integrate one application of LLL, namely a verified factorization algorithm for univariate integer polynomials which runs in polynomial time.

Funder

Austrian Science Fund

Ministerio de Economía, Industria y Competitividad

NWO

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computational Theory and Mathematics,Software

Reference30 articles.

1. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Reason. 52(2), 123–153 (2014)

2. Bottesch, R., Divasón, J., Haslbeck, M., Joosten, S.J.C., Thiemann, R., Yamada, A.: A verified LLL algorithm. In: Archive of Formal Proofs (2018). http://isa-afp.org/entries/LLL_Basis_Reduction.html, Formal proof development

3. Bottesch, R., Haslbeck, M.W., Thiemann, R.: A verified efficient implementation of the LLL basis reduction algorithm. In: LPAR 2018, volume 57 of EPiC Series in Computing, pp. 64–180 (2018)

4. Cohen, C.: Construction of real algebraic numbers in Coq. In: ITP 2012, volume 7406 of LNCS, pp. 7–82 (2012)

5. Collins, G.E.: Factoring univariate integral polynomials in polynomial average time. In: EUROSAM 1979, volume 72 of LNCS (1979)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formalizing Coppersmith’s Method in Isabelle/HOL;Lecture Notes in Computer Science;2024

2. From LCF to Isabelle/HOL;Formal Aspects of Computing;2019-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3