Formalising Szemerédi’s Regularity Lemma and Roth’s Theorem on Arithmetic Progressions in Isabelle/HOL

Author:

Edmonds ChelseaORCID,Koutsoukou-Argyraki AngelikiORCID,Paulson Lawrence C.ORCID

Abstract

AbstractWe have formalised Szemerédi’s Regularity Lemma and Roth’s Theorem on Arithmetic Progressions, two major results in extremal graph theory and additive combinatorics, using the proof assistant Isabelle/HOL. For the latter formalisation, we used the former to first show the Triangle Counting Lemma and the Triangle Removal Lemma: themselves important technical results. Here, in addition to showcasing the main formalised statements and definitions, we focus on sensitive points in the proofs, describing how we overcame the difficulties that we encountered.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computational Theory and Mathematics,Software

Reference36 articles.

1. Bell, S., Grodzicki, W.: Using Szemerédi’s regularity lemma to prove Roth’s theorem. Lecture notes. University of Georgia (2010)

2. Buzzard, K.: What is the point of computers? A question for pure mathematicians. In: Proceedings of the international congress of mathematicians (ICM 2022) (2022). arXiv:2112.11598

3. Conlon, D., Fox, J., Zhao, Y.: The Green-Tao theorem: an exposition. EMS Surv. Math. Sci. 1, 03 (2014)

4. Diestel, R.: Graph Theory. Springer, Cham (2017)

5. Dillies, Y., Mehta, B.: Formalizing Szemerédi’s regularity lemma in Lean. In: Andronick, J., de Moura, L. (eds.) 13th International Conference on Interactive Theorem Proving. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2022)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formal Probabilistic Methods for Combinatorial Structures using the Lovász Local Lemma;Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs;2024-01-09

2. Large-Scale Formal Proof for the Working Mathematician—Lessons Learnt from the ALEXANDRIA Project;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3