Disrupting drive-by download networks on Twitter

Author:

Javed AmirORCID,Ikwu Ruth,Burnap Pete,Giommoni Luca,Williams Matthew L.

Abstract

AbstractThis paper tests disruption strategies in Twitter networks containing malicious URLs used in drive-by download attacks. Cybercriminals use popular events that attract a large number of Twitter users to infect and propagate malware by using trending hashtags and creating misleading tweets to lure users to malicious webpages. Due to Twitter’s 280 character restriction and automatic shortening of URLs, it is particularly susceptible to the propagation of malware involved in drive-by download attacks. Considering the number of online users and the network formed by retweeting a tweet, a cybercriminal can infect millions of users in a short period. Policymakers and researchers have struggled to develop an efficient network disruption strategy to stop malware propagation effectively. We define an efficient strategy as one that considers network topology and dependency on network resilience, where resilience is the ability of the network to continue to disseminate information even when users are removed from it. One of the challenges faced while curbing malware propagation on online social platforms is understanding the cybercriminal network spreading the malware. Combining computational modelling and social network analysis, we identify the most effective strategy for disrupting networks of malicious URLs. Our results emphasise the importance of specific network disruption parameters such as network and emotion features, which have proved to be more effective in disrupting malicious networks compared to random strategies. In conclusion, disruption strategies force cybercriminal networks to become more vulnerable by strategically removing malicious users, which causes successful network disruption to become a long-term effort.

Funder

economic and social research council

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Media Technology,Communication,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early Malware Characterization based on Online Social Networks;2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet);2023-12-11

2. Digital fingerprinting for identifying malicious collusive groups on Twitter;Journal of Cybersecurity;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3