Locating community smells in software development processes using higher-order network centralities

Author:

Gote Christoph,Perri Vincenzo,Zingg Christian,Casiraghi Giona,Arzig Carsten,von Gernler Alexander,Schweitzer Frank,Scholtes Ingo

Abstract

AbstractCommunity smells are negative patterns in software development teams’ interactions that impede their ability to successfully create software. Examples are team members working in isolation, lack of communication and collaboration across departments or sub-teams, or areas of the codebase where only a few team members can work on. Current approaches aim to detect community smells by analysing static network representations of software teams’ interaction structures. In doing so, they are insufficient to locate community smells within development processes. Extending beyond the capabilities of traditional social network analysis, we show that higher-order network models provide a robust means of revealing such hidden patterns and complex relationships. To this end, we develop a set of centrality measures based on the higher-order network model and show their effectiveness in predicting influential nodes using five empirical datasets. We then employ these measures for a comprehensive analysis of a product team at the German IT security company genua GmbH, showcasing our method’s success in identifying and locating community smells. Specifically, we uncover critical community smells in two areas of the team’s development process. Semi-structured interviews with five team members validate our findings: while the team was aware of one community smell and employed measures to address it, it was not aware of the second. This highlights the potential of our approach as a robust tool for identifying and addressing community smells in software development teams. More generally, our work contributes to the social network analysis field with a powerful set of higher-order network centralities that effectively capture community dynamics and indirect relationships.

Funder

Swiss National Science Foundation

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Media Technology,Communication,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3