A two-stage framework for Arabic social media text misinformation detection combining data augmentation and AraBERT

Author:

Mohamed Ebtsam A.,Ismail Walaa N.,Ibrahim Osman Ali Sadek,Younis Eman M. G.

Abstract

AbstractMisinformation can profoundly impact the reputation of an entity, and eliminating its spread has become a critical concern across various applications. Social media, often a primary source of information, can significantly influence individuals’ perspectives through content from less credible sources. The utilization of machine-learning (ML) algorithms can facilitate automated, large-scale analysis of textual content, contributing to the rapid and efficient processing of extensive datasets for informed decision-making. Since the performance of ML models is highly affected by the size of the training data, many research papers have presented different approaches to solve the problem of limited dataset size. The data augmentation (DA) approach is one of these strategies, aiming to enhance ML model performance by increasing the amount of training data. DA generates new instances by applying different transformations to the original data instances. While many DA techniques have been investigated for various languages, such as English, achieving an enhancement of the classification model’s performance on the new augmented dataset compared to the original dataset, there is a lack of studies on the Arabic language due to its unique characteristics. This paper introduces a novel two-stage framework designed for the automated identification of misinformation in Arabic textual content. The first stage aims to identify the optimal representation of features before feeding them to the ML model. Diverse representations of tweet content are explored, including N-grams, content-based features, and source-based features. The second stage focuses on investigating the DA effect through the back-translation technique applied to the original training data. Back-translation entails translating sentences from the target language (in this case, Arabic) into another language and then back to Arabic. As a result of this procedure, new examples for training are created by introducing variances in the text. The study utilizes support vector machine (SVM), naive Bayes, logistic regression (LR), and random forest (RF) as baseline algorithms. Additionally, AraBERT transformer pre-trained language models are used to relate the instance’s label and feature representation of the input. Experimental outcomes demonstrate that misinformation detection, coupled with data augmentation, enhances accuracy by a noteworthy margin 5 to 12% compared to baseline machine-learning algorithms and pre-trained models. Remarkably, the results show the superiority of the N-grams approach over traditional state-of-the-art feature representations concerning accuracy, recall, precision, and F-measure metrics. This suggests a promising avenue for improving the efficacy of misinformation detection mechanisms in the realm of Arabic text analysis.

Funder

Minia University

Publisher

Springer Science and Business Media LLC

Reference49 articles.

1. Al-Khalifa H, Abuzayed A (2021) Sarcasm and sentiment detection in Arabic tweets using Bert-based models and data augmentation. In: Proceedings of the sixth Arabic natural language processing workshop

2. Ajao O, Bhowmik D, Zargari S (2018) Fake news identification on twitter with hybrid CNN and RNN models. In: Proceedings of the 9th international conference on social media and society, pp 226–230

3. Al-Dhabyani W, Gomaa M, Khaled H, Aly F (2019) Deep learning approaches for data augmentation and classification of breast masses using ultrasound images. Int J Adv Comput Sci Appl 10:1–11

4. Al Zaatari A, El Ballouli R, ELbassouni S, El-Hajj W, Hajj H, Shaban K, Habash N, Yahya E (2016) Arabic corpora for credibility analysis. In: Proceedings of the tenth international conference on language resources and evaluation (LREC’16), pp 4396–4401

5. Albalawi RM, Jamal AT, Khadidos AO, Alhothali AM (2023) Multimodal Arabic rumors detection. IEEE. Access 11:9716–9730

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3