Modification-fair cluster editing

Author:

Froese Vincent,Kellerhals Leon,Niedermeier Rolf

Abstract

AbstractThe classic Cluster Editing problem (also known as Correlation Clustering) asks to transform a given graph into a disjoint union of cliques (clusters) by a small number of edge modifications. When applied to vertex-colored graphs (the colors representing subgroups), standard algorithms for the NP-hard Cluster Editing problem may yield solutions that are biased towards subgroups of data (e.g., demographic groups), measured in the number of modifications incident to the members of the subgroups. We propose a modification fairness constraint which ensures that the number of edits incident to each subgroup is proportional to its size. To start with, we study Modification-Fair Cluster Editing for graphs with two vertex colors. We show that the problem is NP-hard even if one may only insert edges within a subgroup; note that in the classic “non-fair” setting, this case is trivially polynomial-time solvable. However, in the more general editing form, the modification-fair variant remains fixed-parameter tractable with respect to the number of edge edits. We complement these and further theoretical results with an empirical analysis of our model on real-world social networks where we find that the price of modification-fairness is surprisingly low, that is, the cost of optimal modification-fair solutions differs from the cost of optimal “non-fair” solutions only by a small percentage.

Funder

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Reference31 articles.

1. Abbasi M, Bhaskara A, Venkatasubramanian S ( 2021) Fair clustering via equitable group representations. In: proceedings of the ACM conference on fairness, accountability, and transparency (FAccT ’21), pp. 504– 514. ACM, Virtual Event . https://doi.org/10.1145/3442188.3445913

2. Ahmadian S, Epasto A, Knittel M, Kumar R, Mahdian M, Moseley B, Pham P, Vassilvitskii S, Wang Y ( 2020) Fair hierarchical clustering. In: proceedings of the 33rd annual coference on advances in neural information processing systems (NeurIPS ’20), Virtual Event, pp. 21050– 21060 . https://proceedings.neurips.cc/paper/2020/hash/f10f2da9a238b746d2bac55759915f0d-Abstract.html

3. Ahmadian S, Epasto A, Kumar R, Mahdian M ( 2020) Fair correlation clustering. In: Proceedings of the 23rd international conference on artificial intelligence and statistics (AISTATS ’20), pp. 4195– 4205. PMLR, Virtual Event . http://proceedings.mlr.press/v108/ahmadian20a.html

4. Ahmadi S, Galhotra S, Saha B, Schwartz R (2020) Fair correlation clustering. arXiv . https://doi.org/10.48550/ARXIV.2002.03508 . https://arxiv.org/abs/2002.03508

5. Ahmadian S, Negahbani M (2023) Improved approximation for fair correlation clustering. In: Proceedings of the 26th international conference on artificial intelligence and statistics (AISTATS ’23), pp. 9499– 9516. PMLR, Valencia, Spain . https://proceedings.mlr.press/v206/ahmadian23a.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3