A systematic literature review of sparsity issues in recommender systems
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Human-Computer Interaction,Media Technology,Communication,Information Systems
Link
http://link.springer.com/content/pdf/10.1007/s13278-020-0626-2.pdf
Reference65 articles.
1. Anand D, Bharadwaj K (2011) Utilizing various sparsity measures for enhancing accuracy of collaborative recommender systems based on local and global similarities. Expert Syst Appl 38(5):5101–5109. https://doi.org/10.1016/j.eswa.2010.09.141
2. Cai G, Chen N (2018) Constrained probabilistic matrix factorization with neural network for recommendation system. In: International conference on intelligent information processing, pp 236–246. https://doi.org/10.1007/978-3-030-00828-4_24
3. Chen C, Chang KCC, Li Q, Zheng X (2018a) Semi-supervised learning meets factorization: learning to recommend with chain graph model. ACM Trans Knowl Discov Data (TKDD) 12(6):73. https://doi.org/10.1145/3264745
4. Chen R, Hua Q, Gao Q, Xing Y (2018b) A hybrid recommender system for Gaussian mixture model and enhanced social matrix factorization technology based on multiple interests. Math Probl Eng. https://doi.org/10.1155/2018/9109647
5. Dixit VS, Jain P (2018) Recommendations with sparsity based weighted context framework. In: International conference on computational science and its applications, pp 289–305. https://doi.org/10.1007/978-3-319-95171-3_23
Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Novel Autorec-Based Architecture for Recommendation System;2024 Tenth International Conference on Communications and Electronics (ICCE);2024-07-31
2. Regionalization-Based Collaborative Filtering: Harnessing Geographical Information in Recommenders;ACM Transactions on Spatial Algorithms and Systems;2024-05-21
3. Challenging Low Homophily in Social Recommendation;Proceedings of the ACM Web Conference 2024;2024-05-13
4. Integrating Active Learning Strategies in Model Based Recommender Systems;Proceedings of the 7th International Conference on Networking, Intelligent Systems and Security;2024-04-18
5. Hybrid Approach to Improve Recommendation of Cloud Services for Personalized QoS Requirements;Electronics;2024-04-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3