Hyperbolic Harmonic Functions and Hyperbolic Brownian Motion

Author:

Eriksson Sirkka-LiisaORCID,Kaarakka Terhi

Abstract

Abstract We study harmonic functions with respect to the Riemannian metric $$\begin{aligned} ds^{2}=\frac{dx_{1}^{2}+\cdots +dx_{n}^{2}}{x_{n}^{\frac{2\alpha }{n-2}}} \end{aligned}$$ d s 2 = d x 1 2 + + d x n 2 x n 2 α n - 2 in the upper half space $$\mathbb {R}_{+}^{n}=\{\left( x_{1},\ldots ,x_{n}\right) \in \mathbb {R}^{n}:x_{n}>0\}$$ R + n = { x 1 , , x n R n : x n > 0 } . They are called $$\alpha $$ α -hyperbolic harmonic. An important result is that a function f is $$\alpha $$ α -hyperbolic harmonic íf and only if the function $$g\left( x\right) =x_{n}^{-\frac{ 2-n+\alpha }{2}}f\left( x\right) $$ g x = x n - 2 - n + α 2 f x is the eigenfunction of the hyperbolic Laplace operator $$\bigtriangleup _{h}=x_{n}^{2}\triangle -\left( n-2\right) x_{n}\frac{\partial }{\partial x_{n}}$$ h = x n 2 - n - 2 x n x n corresponding to the eigenvalue $$\ \frac{1}{4}\left( \left( \alpha +1\right) ^{2}-\left( n-1\right) ^{2}\right) =0$$ 1 4 α + 1 2 - n - 1 2 = 0 . This means that in case $$\alpha =n-2$$ α = n - 2 , the $$n-2$$ n - 2 -hyperbolic harmonic functions are harmonic with respect to the hyperbolic metric of the Poincaré upper half-space. We are presenting some connections of $$\alpha $$ α -hyperbolic functions to the generalized hyperbolic Brownian motion. These results are similar as in case of harmonic functions with respect to usual Laplace and Brownian motion.

Funder

University of Helsinki including Helsinki University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fundamental Solutions for the Laplace–Beltrami Operator Defined by the Conformal Hyperbolic Metric and Jacobi Polynomials;Complex Analysis and Operator Theory;2023-12-08

2. On the Mean Ergodic Theorem in Bicomplex Banach Modules;Advances in Applied Clifford Algebras;2023-02

3. Toward infinite‐dimensional Clifford analysis;Mathematical Methods in the Applied Sciences;2022-04-15

4. Brownian Motion, Martingales and Itô Formula in Clifford Analysis;Advances in Applied Clifford Algebras;2022-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3