Abstract
AbstractThis paper investigates the distribution function and nonincreasing rearrangement of $$\mathbb{B}\mathbb{C}$$
B
C
-valued functions equipped with the hyperbolic norm. It begins by introducing the concept of the distribution function for $$ \mathbb{B}\mathbb{C}$$
B
C
-valued functions, which characterizes valuable insights into the behavior and structure of $$\mathbb{B}\mathbb{C}$$
B
C
-valued functions, allowing to analyze their properties and establish connections with other mathematical concepts. Next, the nonincreasing rearrangement of $$\mathbb{B}\mathbb{C}$$
B
C
-valued functions with the hyperbolic norm are studied. By exploring the nonincreasing rearrangement of $$\mathbb{B}\mathbb{C}$$
B
C
-valued functions, it is aimed to determine how the hyperbolic norm influences the rearrangement process and its impact on the function’s behavior and properties.
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. Alpay, D., Luna-Elizarrarás, M.E., Shapiro, M., Struppa, D.C.: Basics of functional analysis with bicomplex scalars, and bicomplex Schur analysis. Springer Science & Business Media (2014)
2. Castillo, R.E., Rafeiro, H.: An introductory course in Lebesgue spaces. In: CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, (2016)
3. Charak, K.S., Kumar, R., Rochon, D.: Infinite dimensional bicomplex spectral decomposition theorem. Adv. Appl. Clifford Algebras 23, 593–605 (2013)
4. Colombo, F., Sabatini, I., Struppa, D.: Bicomplex holomorphic functional calculus. Math. Nachr. 287(10), 1093–1105 (2014)
5. Dubey, S., Kumar, R., Sharma, K.: A note on bicomplex Orlicz spaces. arXiv preprint arXiv:1401.7112, pp. 1-12 (2014)