Abstract
AbstractIn physics, spin is often seen exclusively through the lens of its phenomenological character: as an intrinsic form of angular momentum. However, there is mounting evidence that spin fundamentally originates as a quality of geometry, not of dynamics, and recent work further suggests that the structure of non-relativistic Euclidean three-space is sufficient to define it. In this paper, we directly explicate this fundamentally non-relativistic, geometric nature of spin by constructing non-commutative algebras of position operators which subsume the structure of an arbitrary spin system. These “Spin-s Position Algebras” are defined by elementary means and from the properties of Euclidean three-space alone, and constitute a fundamentally new model for quantum mechanical systems with non-zero spin, within which neither position and spin degrees of freedom, nor position degrees of freedom within themselves, commute. This reveals that the observables of a system with spin can be described completely geometrically as tensors of oriented planar elements, and that the presence of non-zero spin in a system naturally generates a non-commutative geometry within it. We will also discuss the potential for the Spin-s Position Algebras to form the foundation for a generalisation to arbitrary spin of the Clifford and Duffin–Kemmer–Petiau algebras.
Publisher
Springer Science and Business Media LLC