Quaternion Convolutional Neural Networks: Current Advances and Future Directions

Author:

Altamirano-Gomez GerardoORCID,Gershenson Carlos

Abstract

AbstractSince their first applications, Convolutional Neural Networks (CNNs) have solved problems that have advanced the state-of-the-art in several domains. CNNs represent information using real numbers. Despite encouraging results, theoretical analysis shows that representations such as hyper-complex numbers can achieve richer representational capacities than real numbers, and that Hamilton products can capture intrinsic interchannel relationships. Moreover, in the last few years, experimental research has shown that Quaternion-valued CNNs (QCNNs) can achieve similar performance with fewer parameters than their real-valued counterparts. This paper condenses research in the development of QCNNs from its very beginnings. We propose a conceptual organization of current trends and analyze the main building blocks used in the design of QCNN models. Based on this conceptual organization, we propose future directions of research.

Funder

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Universidad Nacional Autónoma de México

Publisher

Springer Science and Business Media LLC

Reference181 articles.

1. Adavanne, S., Politis, A., Nikunen, J., Virtanen, T.: Sound event localization and detection of overlapping sources using convolutional recurrent neural networks. IEEE J. Sel. Top. Signal Process. 13(1), 34–48 (2019). https://doi.org/10.1109/JSTSP.2018.2885636

2. Adavanne, S., Politis, A., Virtanen, T.: Direction of arrival estimation for multiple sound sources using convolutional recurrent neural network. In: Proceedings of the 26th European Signal Processing Conference, EUSIPCO, pp. 1462–1466. IEEE, Rome (2018)

3. Altamirano, G.: Geometric methods of perceptual organisation for computer vision. Ph.D. thesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Cinvestav (2017)

4. Altmann, S.: Rotations, Quaternions, and Double Groups, 1st edn. Oxford University Press, New York (1986)

5. Anselmi, F., Leibo, J.Z., Rosasco, L., Mutch, J., Tacchetti, A., Poggio, T.: Unsupervised learning of invariant representations with low sample complexity: The magic of sensory cortex or a new framework for machine learning. Tech. Rep. CBMM Memo No. 001, Massachusetts Institute of Technology, Cambridge (2014)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3