Exploring Quaternion Neural Network Loss Surfaces

Author:

Bill JeremiahORCID,Cox Bruce

Abstract

AbstractThis paper explores the superior performance of quaternion multi-layer perceptron (QMLP) neural networks over real-valued multi-layer perceptron (MLP) neural networks, a phenomenon that has been empirically observed but not thoroughly investigated. The study utilizes loss surface visualization and projection techniques to examine quaternion-based optimization loss surfaces for the first time. The primary contribution of this research is the statistical evidence that QMLP models yield smoother loss surfaces than real-valued neural networks, which are measured and compared using a robust quantitative measure of loss surface “goodness” based on estimates of surface curvature. Extensive computational testing validates the effectiveness of these surface curvature estimates. The paper presents a comprehensive comparison of the average surface curvature of a tuned QMLP model and a tuned real-valued MLP model on both a regression task and a classification task. The results provide strong support for the improved optimization performance observed in QMLPs across various problem domains.

Publisher

Springer Science and Business Media LLC

Reference40 articles.

1. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H.: State-of-the-art in artificial neural network applications: A survey. Heliyon 4(11), e00938 (2018). https://doi.org/10.1016/j.heliyon.2018.e00938. http://www.sciencedirect.com/science/article/pii/S2405844018332067

2. Arena, P., Fortuna, L., Re, R., Xibilia, M.: On the capability of neural networks with complex neurons in complex valued functions approximation. In: 1993 IEEE International Symposium on Circuits and Systems, vol. 4, pp. 2168–2171 (1993). https://doi.org/10.1109/ISCAS.1993.394188

3. Arena, P., Fortuna, L., Occhipinti, L., Xibilia, M.: Neural networks for quaternion-valued function approximation. In: Proceedings of IEEE International Symposium on Circuits and Systems—ISCAS ’94, vol. 6, pp. 307–310 (1994). https://doi.org/10.1109/ISCAS.1994.409587

4. Arena, P., Baglio, S., Fortuna, L., Xibilia, M.: Chaotic time series prediction via quaternionic multilayer perceptrons. In: 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, vol. 2, pp. 1790–1794. IEEE, Vancouver (1995). https://doi.org/10.1109/ICSMC.1995.538035. http://ieeexplore.ieee.org/document/538035/

5. Arena, P., Fortuna, L., Muscato, G., Xibilia, M.G.: Multilayer perceptrons to approximate quaternion valued functions. Neural Netw. 10(2), 335–342 (1997). https://doi.org/10.1016/S0893-6080(96)00048-2. http://www.sciencedirect.com/science/article/pii/S0893608096000482

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3