Quantification of arbuscular mycorrhizal fungi root colonization in wheat, tomato, and leek using absolute qPCR

Author:

Corona Ramírez Andrea,Symanczik Sarah,Gallusser Tabea,Bodenhausen Natacha

Abstract

AbstractArbuscular mycorrhizal fungi (AMF) form symbioses with most terrestrial plants and are known to have a positive effect on plant growth and health. Different methodologies have been developed to assess the AMF-plant symbiosis. The most applied method, which involves staining of roots and microscopic observation of the AMF structures, is tedious and time-consuming and the results are highly dependent on the observer. Using quantitative polymerase chain reaction (qPCR) to quantify AMF root colonization represents a reliable, high-throughput technique that allows the assessment of numerous samples. Quantification with qPCR can be performed through two methods: relative quantification and absolute quantification. In relative quantification, the target gene is normalized with a reference gene. On the other hand, absolute quantification involves the use of a standard curve, for which template DNA is serially diluted. In a previous paper, we validated the primer pair AMG1F and AM1 for a relative quantification approach to assess AMF root colonization in Petunia. Here, we tested the same primers with an absolute quantification approach and compared the results with the traditional microscopy method. We evaluated the qPCR method with three different crops, namely, wheat (cv. Colmetta and Wiwa), tomato, and leek. We observed a strong correlation between microscopy and qPCR for Colmetta (r = 0.90, p < 0.001), Wiwa (r = 0.94, p < 0.001), and tomato (r = 0.93, p < 0.001), but no correlation for leek (r = 0.27, p = 0.268). This highlights the importance of testing the primer pair for each specific crop.

Funder

FiBL Microbiome lighthouse project

Horizon 2020 Framework Programme

Swiss State Secretariat for Education, Research and Innovation

HORIZON EUROPE Framework Programme

Research Institute of Organic Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3