Track and trace: how soil labelling techniques have revealed the secrets of resource transport in the arbuscular mycorrhizal symbiosis

Author:

Watts-Williams Stephanie J.ORCID

Abstract

AbstractArbuscular mycorrhizal (AM) fungi colonise plant roots, and by doing so forge the ‘mycorrhizal uptake pathway(s)’ (MUP) that provide passageways for the trade of resources across a specialised membrane at the plant–fungus interface. The transport of nutrients such as phosphorus (P), nitrogen and zinc from the fungus, and carbon from the plant, via the MUP have mostly been quantified using stable or radioactive isotope labelling of soil in a specialised hyphae-only compartment. Recent advances in the study of AM fungi have used tracing studies to better understand how the AM association will function in a changing climate, the extent to which the MUP can contribute to P uptake by important crops, and how AM fungi trade resources in interaction with plants, other AM fungi, and friend and foe in the soil microbiome. The existing work together with well-designed future experiments will provide a valuable assessment of the potential for AM fungi to play a role in the sustainability of managed and natural systems in a changing climate.

Funder

Australian Research Council

The University of Adelaide

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3