An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way

Author:

Pauwels RichardORCID,Graefe JanORCID,Bitterlich MichaelORCID

Abstract

AbstractArbuscular mycorrhizal fungi (AMF) alter plant water relations and contribute to soil structure. Although soil hydraulic properties depend on soil structure and may limit plant water uptake, little is known about how AMF influence soil water retention (the relation between the soil water content and soil water potential) and hydraulic conductivity in different soils. Instead, these soil hydraulic properties often are considered to be independent of AMF presence in experiments. We asked if this assumption holds true for both sand and loam. We grew maize plants either inoculated with Rhizophagus irregularis or with autoclaved inoculum in pots filled with quartz sand or loam soil until extraradical spread of the fungus throughout the pots was achieved. Each pot contained a hyphal compartment made of a soil sampling core (250 cm3) covered with a 20-µm nylon mesh to encourage fungus ingrowth but to exclude root ingrowth. We measured soil water retention and unsaturated hydraulic conductivity in these undisturbed root-free soil volumes. We observed that in loam harboring the mycorrhizal fungus, the soil water retention decreased, while in sand, it increased without detectable changes in the soil bulk density. The effects of the fungus on the soil water potential were strongest at low soil water contents in both soils. As a consequence of the altered water potentials in soils with the mycorrhizal fungus, soil hydraulic conductivity increased in loam but decreased in sand after fungus ingrowth. We conclude that in our study, the mycorrhizal fungus acted as a soil conditioner even distant from roots, which encouraged drainage in loams prone to sogginess but enhanced water storage in sands prone to quick desiccation. We recommend considering soil hydraulic properties as being dynamic in future studies on water relations of mycorrhizal plants.

Funder

Leibniz collaborative Excellence Program 2019

Humboldt-Universität zu Berlin

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3