An accurate denoising lithium-ion battery remaining useful life prediction model based on CNN and LSTM with self-attention
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Engineering,General Materials Science,General Chemical Engineering
Link
https://link.springer.com/content/pdf/10.1007/s11581-023-05204-7.pdf
Reference43 articles.
1. Cui RG, Guo J, Cheng LH, Zhang YX, Liu W (2021) Status and trends analysis of global clean energies. Acta Geosci Sin 42:179–186. https://doi.org/10.3975/cagsb.2020.090401
2. Liu Q, Hao SY, Feng D, Mei Y, Zeng TB (2022) Research progress of anode materials for lithium-ion battery. Acta Mater Compos Sin 39:1446–1456. https://doi.org/10.13801/j.cnki.fhclxb.20211101.002
3. Chen W, Liang J, Yang Z, Li G (2019) A review of lithium-ion battery for electric vehicle applications and beyond. Energy Procedia 158:4363–4368. https://doi.org/10.1016/j.egypro.2019.01.783
4. Li X, Yu D, Vilsen SB, Store DI (2023) The development of machine learning-based remaining useful life prediction for lithium-ion batteries. J Energy Chem. https://doi.org/10.1016/j.jechem.2023.03.026
5. Kong JZ, Yang F, Zhang X, Pan E, Peng Z, Wang D (2021) Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries. Energy 223:120114. https://doi.org/10.1016/j.energy.2021.120114
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Study of Electric Bicycle Lithium Battery Charging Monitoring Using CNN and BiLSTM Networks Model with NILM Method;Electronics;2024-08-21
2. Capacity prediction of lithium-ion batteries based on ensemble empirical mode decomposition and hybrid machine learning;Ionics;2024-08-18
3. High precision estimation of remaining useful life of lithium-ion batteries based on strongly correlated aging feature factors and AdaBoost framework;Ionics;2024-08-03
4. Remaining useful life prediction of lithium-ion batteries based on performance degradation mechanism analysis and improved Deep Extreme Learning Machine model;Ionics;2024-07-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3