Abstract
Abstract
Aims/hypothesis
Acetyl coenzyme A acetyltransferase (ACAT), also known as acetoacetyl-CoA thiolase, catalyses the formation of acetoacetyl-CoA from acetyl-CoA and forms part of the isoprenoid biosynthesis pathway. Thus, ACAT plays a central role in cholesterol metabolism in a variety of cells. Here, we aimed to assess the effect of hepatic Acat2 overexpression on cholesterol metabolism and systemic energy metabolism.
Methods
We generated liver-targeted adeno-associated virus 9 (AAV9) to achieve hepatic Acat2 overexpression in mice. Mice were injected with AAV9 through the tail vein and subjected to morphological, physiological (body composition, indirect calorimetry, treadmill, GTT, blood biochemistry, cardiac ultrasonography and ECG), histochemical, gene expression and metabolomic analysis under normal diet or feeding with high-fat diet to investigate the role of ACAT2 in the liver.
Results
Hepatic Acat2 overexpression reduced body weight and total fat mass, elevated the metabolic rate, improved glucose tolerance and lowered the serum cholesterol level of mice. In addition, the overexpression of Acat2 inhibited fatty acid, glucose and ketone metabolic pathways but promoted cholesterol metabolism and changed the bile acid pool and composition of the liver. Hepatic Acat2 overexpression also decreased the size of white adipocytes and promoted lipid metabolism in white adipose tissue. Furthermore, hepatic Acat2 overexpression protected mice from high-fat-diet-induced weight gain and metabolic defects
Conclusions/interpretation
Our study identifies an essential role for ACAT2 in cholesterol metabolism and systemic energy expenditure and provides key insights into the metabolic benefits of hepatic Acat2 overexpression. Thus, adenoviral Acat2 overexpression in the liver may be a potential therapeutic tool in the treatment of obesity and hypercholesterolaemia.
Graphical abstract
Funder
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Suzhou Minsheng Science and Technology Project
Publisher
Springer Science and Business Media LLC
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献