Abstract
Abstract
Aims/hypothesis
The role of HbA1c variability in the progression of diabetic kidney disease is unclear, with most studies to date performed in White populations and limited data on its role in predicting advanced kidney outcomes. Our aim was to evaluate if long-term intra-individual HbA1c variability is a risk factor for kidney disease progression (defined as an eGFR decline of ≥50% from baseline with a final eGFR of <30 ml/min per 1.73 m2) in an ethnically heterogeneous cohort of people with type 1 diabetes with a preserved eGFR ≥45 ml/min per 1.73 m2 at baseline.
Methods
Electronic health record data from people attending outpatient clinics between 2004 and 2018 in two large university hospitals in London were collected. HbA1c variability was assessed using three distinct methods: (1) SD of HbA1c (SD-HbA1c); (2) visit-adjusted SD (adj-HbA1c): SD-HbA1c/√n/(n–1), where n is the number of HbA1c measurements per participant; and (3) CV (CV-HbA1c): SD-HbA1c/mean-HbA1c. All participants had six or more follow-up HbA1c measurements. The eGFR was measured using the Chronic Kidney Disease Epidemiology Collaboration equation and clinical/biochemical results from routine care were extracted from electronic health records.
Results
In total, 3466 participants (50% female, 78% White, 13% African Caribbean, 3% Asian and 6% of mixed heritage or self-reporting as ‘other’) were followed for a median (IQR) of 8.2 (4.2–11.6) years. Of this cohort, 249 (7%) showed kidney disease progression. Higher HbA1c variability was independently associated with a higher risk of kidney disease progression, with HRs (95% CIs) of 7.76 (4.54, 13.26), 2.62 (1.75, 3.94) and 5.46 (3.40, 8.79) (lowest vs highest HbA1c variability quartile) for methods 1–3, respectively. Increasing age, baseline HbA1c, systolic BP and urinary albumin/creatinine ratio were also associated with kidney disease progression (p<0.05 for all). African Caribbean ethnicity was associated with an increased risk of kidney disease progression (HR [95% CI] 1.47 [1.09, 1.98], 1.76 [1.32, 2.36] and 1.57 [1.17, 2.12] for methods 1–3, respectively) and this effect was independent of glycaemic variability and other traditional risk factors.
Conclusions/interpretation
We observed an independent association between HbA1c variability, evaluated using three distinct methods, and significant kidney disease progression in a multi-ethnic type 1 diabetes cohort. Further studies are needed to elucidate the mechanisms that may explain our results and evaluate if HbA1c variability is a modifiable risk factor for preventing diabetic kidney disease progression.
Graphical Abstract
Funder
Guy's & St Thomas' Foundation
Publisher
Springer Science and Business Media LLC